기록물 소독대상 선별 및 처리 매뉴얼

2022. 4.

국 가 기 록 원 보존관리과

목 차

I.총칙1
1. 목 적 1
2. 적용근거 1
3. 적용범위 1
4. 용어정의 1
5. 기록물의 보존환경 관리를 위한 기본사항 3
Ⅱ. 기록물 관리 4
1. 소독대상 선별 절차 4
2. 소독대상 선별 기준(유해균) 7
3. 소독대상 선별 기준(해충) 8
4. 소독처리 방법 9
5. 소독효과 검증 11
6. 기록물 유해균 등급 선별 16
[참고문헌] 18
[붙임] 기록물 유해균 등급 및 인체 유해균 자료 / 20

기록물 소독대상 선별 및 처리 매뉴얼

Ⅰ. 총 칙

1. 목 적

이 기준은 기록물에 대해 유해균과 해충 피해에 대비하여 안전하고 효율적으로 관리하기 위한 세부적인 기록물 보존처리 업무의 기준과 절차를 정하는데 목적이 있다.

2. 법적근거

- 이 기준의 법적 근거는 다음과 같다.
 - 「공공기록물 관리에 관한 법률」시행규칙 제30조(기록물의 보존처리)

3. 적용범위

이 기준은 「공공기록물 관리에 관한 법률」시행규칙 제30조제2항에 따라 보존기간 이 30년 이상인 기록물 중 소독대상 선별 및 소독처리 업무에 적용한다.

다만, 보존기간이 30년 미만인 기록물에 대해서도 필요에 따라 선별하여 소독처리 를 실시할 수 있다.

4. 용어정의

4.1 ATP(Adenosine Tri-Phosphate)

모든 생물체가 활동하기 위해 사용되는 고유에너지원으로 세포에 존재하는 물질이다.

4.2 ATP 측정기

ATP 양을 측정하는 기기. 유해균에 존재하는 ATP를 측정함으로서 ATP 양을 바탕으로 유해균 오염도를 파악하는 기기로 활용됨.

4.3 RLU(Relative Light Unit, 상대발광단위)

ATP가 시약과 반응하면서 발광하는 광량을 나타내는 단위. ATP 측정기의 측정값 단위로 사용됨.

4.4 IPM(Intergrated Pest Management : 종합유해생물관리)

기록물 보존서고(임시서고 포함)를 대상으로 생물학적 위해요소(충·균 등)를 주기적으로 점검하여 최적의 기록물 보존환경을 유지하기 위한 기록물관리 종합 프로그램을 말한다.

- IPM 관리는 ①청소 ②침입통로 차단 ③조기발견 및 기록 ④방제 ⑤안전한 공간 으로 격납 등 5단계로 제어함

4.5 점착식트랩

곤충을 유인하는 물질을 사용하지 않고 이동 중인 곤충을 점착제로 포획하는 트랩을 말한다.

4.6 페로몬트랩

곤충을 유인하는 향, 먹이 또는 성(性)유도제를 사용하여 포획하는 트랩을 말한다.

4.7 CFU/m³(Colony forming unit, 집락형성단위)

1m³ 공간당 존재하는 유해균(세균 또는 곰팡이)의 수를 나타내는 단위를 말한다. 1체적 공기량에 노출된 배지에 형성된 유해균 집락(colony)을 계수하여 산출한다.

4.8 공시 충·균

실험재료로 공시하여 쓰는 충·균으로 실험곤충, 실험균을 말한다. 실험균으로는 특정세균 또는 진균이 사용된다.

4.9 배지

유해균, 세포 및 식물 등을 증식시키기 위해 고안된 액체나 젤 상태의 영양원을 말하며, 배양할 유해균의 종류나 세포의 종류에 따라 각기 다른 종류의 배지를 사용한다.

4.10 스왑(swab)법

멸균된 면봉이나 거즈 등으로 물체 표면을 문질러 닦아 내는 방법. 일정 면적을 대상으로 표면의 유해균을 검출 분석하는데 사용된다. 유해균 배양법과 함께 사용하여기록물 표면의 유해균 오염도를 측정하거나 분리 동정을 위해서 사용할 수 있다.

4.11 유해균 오염검사

육안검사 후 유해균 오염이 높은 기록물에 대해서는 ATP 측정장비를 적용하여 균 오염도를 측정하는 검사을 말한다.

4.12 에틸렌옥사이드(ethylene oxide, C₂H₄O)

산화에틸렌이라고도 하며, 상온에서 무색이며 강한 살균 및 살충력 가스로 의료기구나 포장용기의 살균제로 사용

5. 기록물의 보존환경 관리를 위한 기본사항

5.1 주변환경 점검

- 보존서고 주위에 유해생물의 서식처가 있는지 여부를 점검한다.
 - 습한 장소, 숲, 고목의 방치 등
- 보존서고 외부와 접하는 부분과 내외 양면을 점검한다.
 - 건물의 누수, 문이나 창문의 틈새, 자재나 쓰레기의 방치 등

5.2 유해생물 발생 요소 제거

- 보존서고 등 실내 먼지, 쓰레기, 곤충 사체 등의 주기적인 청소를 실시한다.
- 서가 및 공기조화기, 닥트 등 각종 설비에 먼지가 쌓이는 것을 방지한다.
- 서고 내 온·습도는 상시 관리한다.
- 보존서고 내 누수, 배관 등은 지속적으로 관리한다.
- 보존서고 내 음식, 음료 등 유해생물의 영양원 반입을 차단한다.

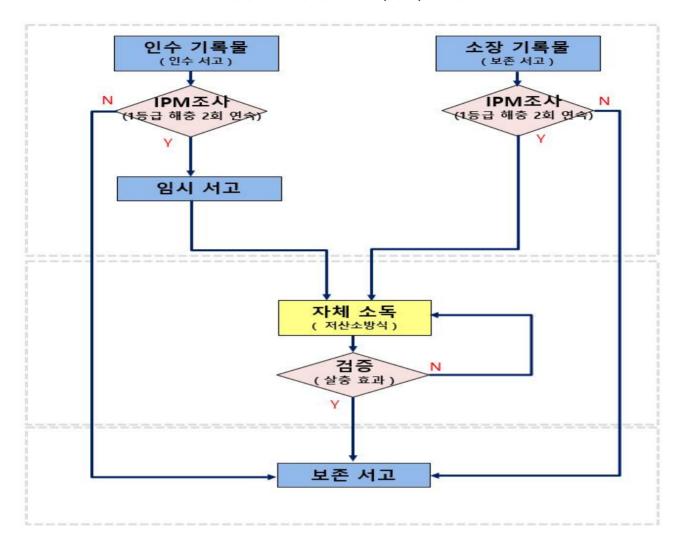
5.3 유해생물의 침입 방지

- 보존서고 복도 및 서고 출입문의 틈새를 보완·강화한다.
- 보존서고 출입문 안에 클린메트 등을 설치한다.
- 보존서고 벽체 균열. 파손 등을 보수한다.
- 보존서고 내 배수관이 있을 경우 유입구에 유해생물 침투방지를 위한 하수트랩 등을 설치한다.

Ⅲ. 기록물 관리

1. 소독 대상 선별절차

기록물은 보존서고에 입고 전, 그리고 보존 중에도 주기적으로 점검과 소독을 실시하는 것이 원칙이다. 그러나 기록물관리기관에서 기록물을 전량 소독하기에는 많은 비용과 시간이 소모될 수 있고 최근에는 서고 보존환경이 개선되어 기록물을 전량소독하는 것은 경우에 따라 비효율적일 수 있다.


이에 따라 다음과 같은 경우에 기록물 점검 및 소독처리 대상을 선별하여 효율적인 관리를 수행할 수 있다. 단, 서고는 항온항습기가 정해진 온습도¹⁾ 조건으로 정상 동 작하고 유해균 및 해충의 주기적 모니터링에서 이상이 없는 경우에 한 한다.

< 기록물 소독대상 선별(유해균) 절차 >

¹⁾ 공공기록물 관리에 관한 법률 시행령 제60조 제1항 별표 6에서 정한 기준을 따른다. 예를 들어 종이기록물은 온도 18~22℃, 습도 40~55%(변화율 10% 이내)의 보존환경이 유지되어야 유해균의 생장을 예방할 수 있다.

< 기록물 소독대상 선별(해충) 절차 >

1.1 인수기록물

- ① 유해균 오염 기록물 대상 선정 및 조치
 - 인수기록물은 인수서고에 배치 후 정리·등록 단계 중 상태검사*를 통해 유해균에 의한 피해 및 오염상태를 확인한다. 오염이 확인된 경우 클리22닝(붓, 스폰지 적용) 후 유해균 오염검사(ATP 측정)를 실시한다. 검사 결과 기준치(1,000RLU) 이상인 경우해당 기록물을 반출하여 화학소독을 실시한다.
 - * 기록물 상태검사 결과 적용 기준 : 3등급(균 오염) 판정 기록물

인수기록물 표본검사는 인수서고의 복식서가를 기준으로 1권 이상의 표본*을 선정하고 육안으로 미생물 오염검사를 실시한다. 선정한 표본기록물 중 유해균에 의한 피해가 확인된 기록물을 대상으로 클리닝(붓, 스폰지 적용) 후 유해균 오염검사(ATP 측정)를 실시하고 검사 결과 기준 치(1,000RLU) 이상일 경우 해당 기록물을 반출하여 화학소독을 실시한다.

* 기록물 표본 선정 : 수침 및 오염상태. 생산년도가 오래된 기록물 등

※ 예시 : 1개 서고에 45개의 서가와 기록물이 가득찬 경우, 45권 이상의 기록물 해당

② 유해충 포획 및 조치

- 인수서고에 페로몬 및 점착식 트랩을 설치(IPM 조사)하여 유해충의 개체 및 개체 수를 확인하다.
- 동일서고에서 1등급 유해충이 2회 연속 포획된 경우, 해당서고 기록물은 전량 저산소방식으로 소독한다. 소독 전 유해충에 오염된 기록물은 유해충의 확산 및 이동 제한을 위해 임시서고에 별도 배치한다. 또한 서고 출입문에 해충 기피제를 부무하다.

1.2 소장기록물

- ① 유해균 오염 기록물 대상 선정 및 조치
 - 보존서고에 배치된 기록물은 상태검사* 결과 오염이 확인된 기록물을 대상으로 클리닝(붓, 스폰지 적용) 후 유해균 오염검사(ATP 측정)를 실시한다. 검사 결과 기준치 (1,000RLU) 이상을 경우 해당 기록물을 반출하여 화학소독을 실시한다.
 - * 기록물 상태검사 결과 적용 기준 : 3등급(균 오염) 판정 기록물

소장기록물 표본검사는, 보존서고의 복식서가를 기준으로 1권 이상의 표본^{*}을 선정하고 육안으로 미생물 오염검사를 실시한다. 선정한 표본기록물 중 유해균에 의한 피해가 확인된 기록물을 대상으로 클리닝(붓, 스폰지 적용) 후 유해균 오염검사(ATP 측정)를 실시하고 검사 결과 기준치(1,000RLU) 이상일 경우 해당 기록물을 반출하여 화학소독을 실시한다.

- * 기록물 표본 선정 : 수침 및 오염상태, 생산년도가 오래된 기록물 등
- ※ 예시 : 1개 서고에 45개의 서가와 기록물이 가득찬 경우, 45권 이상의 기록물 해당

② 유해충 포획 및 조치

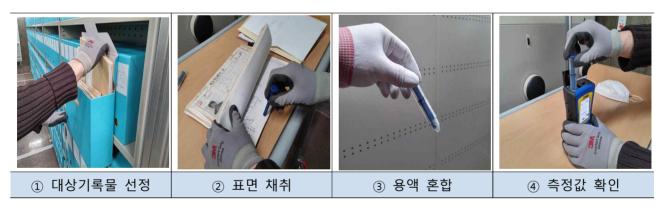
- 보존서고에 페로몬 및 점착식 트랩을 설치(IPM 조사)하여 유해충의 개체 및 개체 수를 확인한다.
- 동일서고에서 1등급 유해충이 2회 연속 포획된 경우, 해당서고 기록물은 전량 저산소방식으로 소독한다. 소독 전 유해충에 오염된 기록물은 유해충의 확산 및 이동 제한을 위해 임시서고에 별도 배치한다. 또한 서고 출입문에 해충 기피제를 분무한다.

2. 소독대상 선별 기준(유해균)

2.1 대상 선정

○ 인수서고 기록물 경우는 1.1의 ③항을, 보존서고 내 기록물 경우는 1.2의 ①항의 선정 기준을 따른다.

2.2 시료 채취


- ATP 채취면봉으로 기록물의 표면을 오가며(스왑) 채취(면적 : 10cm×10cm)한다.
- 기록물의 인쇄 부분 번짐을 예방하기 위해 공란 부분을 채취한다.

2.3 효소용액 혼합 및 반응

○ 채취면봉을 효소용액이 들어 있는 반응용기에 넣고 기록물에서 채취한 ATP 시료를 효소용액과 접촉시킨 후 흔들어 반응시킨다.

2.4 측정값 확인

○ ATP 측정기에 채취면봉과 반응용기를 넣고 10초 동안(측정기 회사에 따라 시간이 다름) 발 광량을 측정 후 얻어진 값(RLU)를 확인한다.

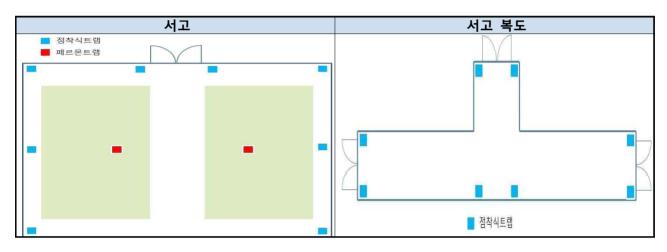
※ ATP 측정기 종류에 따라 반응시간은 상이함으로 기기별 측정 지침에 따른다.

2.5 소독대상 선정 기준

○ 측정결과 1,000RLU 이상일 경우, 화학소독처리 대상으로 선정한다.

2.6 측정 주기

○ 년 1회 이상 실시하고, 향후 보존환경 및 측정결과에 따라 강화 또는 완화할 수 있다.


3. 소독대상 선별 기준(해충)

3.1 사전준비

○ 각 서고별 면적 및 구조를 사전에 파악하고 트랩 설치 장소를 확인한다.

3.2 서고 및 복도 트랩 설치

○ 각 서고 및 충별복도별 지정한 위치에 페로몬트랩 및 점착식트랩을 설치한다.

- 페로몬트랩은 서고 중간쪽에 배치한다.
- 점착식트랩은 서고 입구와 복도 등 해충의 이동이 예상되는 서고와 복도의 가장 자리에 배치한다.
- 트랩을 활용하는 모니터링 기간은 30일로 한다.

3.3 트랩 수거 및 해충 검사

○ 수거한 트랩의 해충 존재 유무, 개체 수, 개체 종 등을 현미경을 이용하여 조사· 분석한다.

3.4 소독대상 선정 기준

○ 트랩 분석 결과 1등급 해충이 동일서고에 재포획될 경우 서고 내의 기록물을 전량 저산소방식으로 소독 처리한다.

3.5 소독대상 판단 개체종

구 분	유형별 기록물 피해 위해도
기록물 물리적 피해 및 오염 해충(1등급)	딱정벌레목(수시렁이과, 빗살수염벌레과, 개나무좀과, 하늘소과 등), 좀목, 흰개미목
기록물 오염 해충 (2등급)	파리목, 거미목, 개미목, 바퀴목, 메뚜기목(꼽등이과, 귀뚜라미과 등), 그리마목 다듬이벌레목(분다듬이벌레과, 어물다듬이벌레과, 책다듬이벌레과, 가루민다듬이벌레)

구 분	기록물 가해 해충 이미지				
기록물 물리적 피해 및 오염 해충(1등급)	권연벌레인삼벌레	대개나무좀 넓적나무좀	애수시렂이 하늘소	알락수시렁이	
기록물 오염 해충 (2등급)	귀뚜라미 파리	꼽등이 거미	바퀴 바퀴 그리마	나방 다듬이벌레	

3.6 측정 주기

○ 년 1회이상 실시하고, 향후 보존환경 및 측정결과에 따라 강화 또는 완화한다.

4. 소독처리 방법

유해균과 해충을 사멸하는 소독 방식에는 다양한 기술적 방법들이 있으나, 기록물에 대해서는 다음의 항목을 고려하여야 한다.

- 소독 실시 후 기록물에 대한 물리·화학적 상태에 영향(색상, 강도 변화 등)이 없어야 한다.
- 소독 방식은 인체에 무해해야 하며 소독처리 과정에서 장비나 약품이 인체에 해를 끼치지 않아야 한다.
- 만약 약품이 유해한 성분이라면 소독장소의 격리 및 보호조치를 철저히 해야 한다. 그리고 소독처리 후 기록물에 잔류하는 약품으로 인해 인체에 해를 입지 않도록 약품 제거에 만전을 기해야 한다.

4.1 유해균 소독

기록물에 유해한 균(진균·세균)의 소독에는 산화에틸렌 등을 사용하는 화학소독을 실 시한다.

① 처리방식

- 사용약제 및 소독방식 : 산화에틸렌 가스를 이용한 훈증소독
- 산화에틸렌을 사용한 소독처리 사례

소독용적	온도기준	처리시간	약품 투약량	유지위한 에틸렌옥사이드 최저 농도
	25~30°C	24시간		
36 m^3	20~25°C	48시간	600 g/m ³	120 g/m ³
	15~20℃	72시간 이상		

[※] 야외 경우 훈증소독시 기상조건에 따라 처리시간을 달리할 수 있다.

② 소독방법

- 격리된 공간에 밀폐용기(챔버)를 설치하고 기록물을 넣는다.
- 약제가 용기(챔버) 외부로 누출되지 않도록 하고, 이를 점검한다.
- 약제를 분사하여 일정시간 동안 소독을 실시한다. 만약 외부로 약제가 누출될 경우, 배기팬을 가동하여 작업 공간에 누출가스가 잔류되지 않도록 한다.
- 소독기간 동안 위험표지판을 부착하여 관계자 이외의 출입을 제한한다.
- 소독 완료 후 내부의 잔여약제는 배기팬과 닥트 등을 이용하여 외부로 배기하고, 기록물에 약제가 잔류하지 않도록 한다.
- 소독처리 후 효과(살균)를 검증하여야 하며 검증방법은 5.1의 1항을 따른다.

4.2 해충 소독

트랩 방식으로 선별된 기록물의 해충 소독은 저산소방식으로 처리한다.

① 처리방식

- 소독방법 : 밀폐공간 내의 산소 농도를 0.1% 이하로 유지하여 살충

- 사용약제 : 질소 또는 아르곤 등의 불활성 기체

- 소독처리 기준(예시)

소독용적	온도	습도	처리시간	유지위한 산소의 최저 농도
ΓO:==3	25℃	40 500/ 10일 0.10/ 이	0.1% 이하	
50m ³	40°C	40~50%	20일	0.1% 이하

[※] 기록물 매체에 따라 온·습도 및 처리시간을 달리할 수 있음

② 소독방법

- 밀폐된 챔버 내에 기록물을 넣는다.

- 소독처리 기준(예시)에 따라 챔버내의 산소농도를 0.1%까지 낮추어 살충처리한다.
- 약 10 ~ 12일 동안 저산소를 유지한다.
- 소독시간 경과 후 챔버에 대기중인 공기를 주입하여 산소농도를 대기상태로 한다.
- 자체 소독장비 적용시 효과(살충)는 1년에 1회이상 검증하여야 하며, 검증방법은 5.2 의 1항을 따른다.

5. 소독효과 검증

소독처리 후 유해충·해충의 사멸을 확인하기 위해 소독전 공시충 및 공시균을 투입하여 소독효과를 검증한다.

5.1 유해균

산화에틸렌(ethylene oxide) 가스를 이용하여 기록물을 소독하고 그 효과를 검증하는 방법으로서 기록물 내부에 존재할 오염균에 대해 효과가 있는지를 검증하고자 공시균선정 후 기록물의 조건을 모사한 시험으로 검증을 하고자 함.

1. 진균 시험방법(필수)

- 1) 진균 포자 현탁액의 준비
 - (1) Aspergillus brasilliensis 또는 Aspergillus niger를 Potato Dextrose Agar(PDA) 배지에 접종 후, 25℃, 상대습도 85% 이상인 배양기에 넣고 5~10일간 배양한다.
 - (2) 배양 후, 포자가 형성된 Aspergillus brasilliensis를 Blade로 긁어 살균수(SDW)에 풀어주어 포자 현탁액을 만든다.
 - (3) 50ml Conical Tube에 Watman Filter Paper No.2를 고정시킨 후 포자 현탁액을 부어 걸러준다.
 - (4) 이때 균사는 걸러서 제거한다.
 - (5) 균사가 제거된 포자 현탁액의 농도는 혈구계(Hemocytometer)를 이용하여 2×10^6 spores/m신으로 맞추어 준비한다.
 - (6) 준비된 포자 현탁액은 제조 후 발아되기 전에 사용한다. 잠시로는 4℃의 냉장고에 보관한다.

2) 샘플북 실험

- (1) 샘플북은 A4용지 200 페이지 분량으로 제본하고 50, 100, 150 페이지에 그림 1과 같이 2cm x 2cm의 면적을 가지는 사각형을 6개 그려 표시한다.
- (2) 표시된 50, 100, 150 페이지의 종이는 생물안전작업대에서 UV를 조사하여 앞 뒤로 표면살균을 수행한다.
- (3) 생물안전작업대에서 살균된 50, 100, 150 페이지 마다 있는 6개의 사각형 중앙에 50μ 신의 2 x 10^6 spores/m신포자 현탁액을 떨어뜨려 완전히 마를 때까지 흡수시킨다.
- (4) 포자를 접종한 샘플북에서 정확히 어느 정도의 균이 흡수되어 있는지 균 농도를 확인하기위해 접종직후 라고 되어 있는 3개의 사각형을 잘라서 20mL의 살균수가 들어있는 50ml conical tube에 넣은 후 vortex mixer를 사용해 5분간 vortexing 하여 균을 종이로부터 해리시킨다.
- (5) Vortexing한 살균수 100μ 를 취하여 PDA 배지에 유리 도말봉을 이용하여 도말한다.
- (6) 도말이 완료된 PDA 배지를 25℃ 배양기에 5일간 배양한 후 집락 개수를 세어 CFU 값을 구한다.
- (7) 샘플북 위치는 그림 2와 같이 배치한다.
- (8) 소독을 진행 한 후 같은 방법으로 소독 직후라고 표시된 사각형 3곳을 50, 100, 150 페이지에서 각각 오려내어 앞서 접종 직후 표시된 곳을 오려내어 살아있는 균의 CFU 값을 구한 방법과 동일하게 CFU 값을 구한다.
- (9) 접종 직후의 CFU 값과 소독 직후 CFU 값을 식1에 따라 계산하고 사멸율을 식2를 이용하여 도출한다.

2. 세균 시험방법(선택)

- 1) 세균 현탁액의 준비
 - (1) Micrococcus luteus를 TSA(Triptone Soy Agar) 배지에 3차 획선하여 접종 후, 25℃, 상대습도 85% 이상인 배양기에 넣고 1~2일간 배양한다.
 - (2) 배양 후, 집락이 형성된 Micrococcus luteus 중 하나의 집락을 루프로 떼어 TSB(Triptone Soy Broth) 20mL에 풀어준 후 25℃의 진탕배양기에서 1 ~ 2일간 배양

하여 증균한다.

- (3) 증균시킨 세균배양액은 원심분리 후 상층액을 버리고 침전된 세균 취한다..
- (4) 살균증류수 10mL를 더하여 침전된 세균을 재부유시킨다.
- (5) 세균 현탁액의 농도를 희석 및 혈구계를 이용하여 2 x 10⁶spores/mL으로 조절하여 준비한다.
- (6) 준비된 세균 현탁액은 제조 후 바로 사용한다. 필요시 4℃의 냉장고에 보관한다.

2) 샘플북 접종 실험

- (1) 샘플북은 A4용지 200 페이지 분량으로 제본하고 50, 100, 150 페이지에 그림 1과 같이 2cm x 2cm의 면적을 가지는 사각형을 6개 그려 표시한다.
- (2) 표시된 50, 100, 150 페이지의 종이는 생물안전작업대에서 UV를 조사하여 앞 뒤로 표면살균을 수행한다.
- (3) 생물안전작업대에서 살균된 50, 100, 150 페이지 마다 있는 6개의 사각형 중앙에 50μ L의 2 x 10^6 spores/mL세균 현탁액을 떨어뜨려 완전히 마를 때까지 흡수시킨다
- (4) 세균을 접종한 샘플북에서 정확히 어느 정도의 균이 흡수되어 있는지 균 농도를 확인하기위해 접종직후 라고 되어 있는 3개의 사각형을 잘라서 20mL의 살균수가 들어있는 50mL conical tube에 넣은 후 vortex mixer를 사용해 5분간 vortexing 하여 균을 종이로부터 해리 시킨다.
- (5) Vortexing한 살균수 100uL 취하여 TSA 배지에 유리 도말봉을 이용하여 도말한다.
- (6) 도말이 완료된 TSA 배지를 25℃ 배양기에 1 ~ 2일간 배양한 후 Colony 개수를 세어 CFU 값을 구한다.
- (7) 샘플북 위치는 그림 2와 같이 배치한다.
- (8) 접종 직후의 CFU 값과 소독 직후 CFU 값을 식 1에 따라 계산하고 사멸율을 식 2를 이용하여 도출한다.
- (9) 소독을 진행 한 후 같은 방법으로 소독 직후라고 표시된 사각형 3곳을 50, 100, 150 페이지에서 각각 오려내어 앞서 접종 직후라고 표시된 사각형을 오려내어 살아있는 세균의 CFU 값을 구한 방법과 동일하게 CFU 값을 구한다.

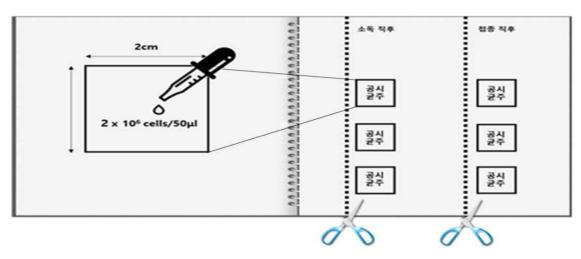
3. 결과 계산

1) 식1. N = C x D x V

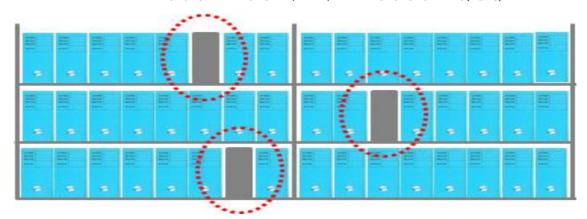
N : 균수

C : 집락수(3반복한 배지의 colony 평균)

D: 희석배수(100µL를 사용하였으므로 10배를 곱해 기준을 1mL로 바꾸어준다.)


V : 샘플북에서 균 회수에 사용된 살균수의 부피, 여기서는 20mL

2) 식2. R(%): [(A - B) / A] x 100


R : 사멸율

A : 초기 균수(접종 직후 균수)

B: 소독 후 균수(소독 직후)

〈 그림1. 200페이지 샘플북의 50, 100, 150 페이지의 준비(예시) 〉

< 그림2. 샘플북 위치 이미지(예시) >

5.2 해충

소독장치가 각각의 공시충(바구미류, 수시렁이류, 화랑곡나방 등)에 대해서 기록물 내부까지의

살충력을 나타낼 수 있는지를 파악하고 살충 효과가 기록물 내부에 균질하게 적용되는 지를

면밀히 검증하기 위한 방법으로 공시충 선정 후 기록물의 조건을 모사한 시험으로 검

증을 하고자 함.

1. 살충 시험방법

1) 공시충 및 샘플북 준비

(1) 시험대상 공시충인 바구미류와 수시렁이류, 화랑곡나방 등을 각각 30마리씩 공기

가 잘 통하는 종이망(8cm x 8cm)에 공시충 먹이와 함께 투입, 사료 부족으로 인

한 사멸 방지를 위하여 바구미류의 겨우 현미 30g을 같이 투입하고, 수시렁이의

경우 황태 5g을 같이 투입한다.

※ 수시렁이 90마리(황태 15g), 어리쌀바구미, 권연벌레, 화랑곡나방 각각 90마리(현미 90g)

(2) 샘플북은 A4용지 300페이지 분량으로 제본하고 150 페이지에 그림 1과 같이

10cm x 10cm의 면적을 가지는 사각형모양의 내부 홈을 만든다. 내부 홈에 공시충과

사료가 함께 투입된 종이망을 투입한다.

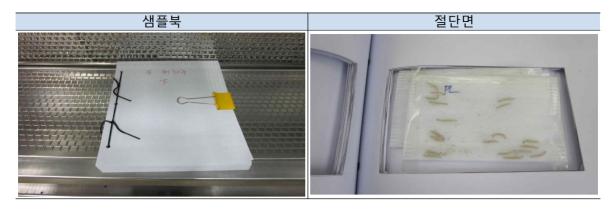
(3) 샘플북 3권에 각각 준비된 공시충을 각각 투입 후 샘플북 위치는 그림 2와 같이

배치한다.

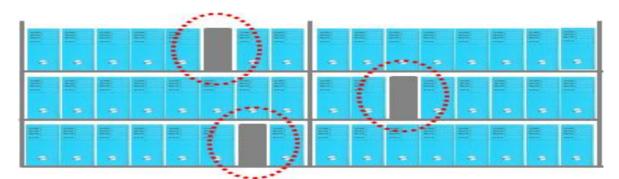
(4) 소독완료 후 각각의 공시충을 배양기 내부(온도 : 28℃±1℃, 상대습도 : 65%±5%)에

2일(48시간) 동안 보관하면서 생존개체수와 치사개체수를 확인하여 살충율은 식을 이

용하여 도출한다.


2. 결과 계산

식 R(%): [(A - B)/A]x 100


R : 살충율

A: 초기 공시충 생존수

B : 소독 후 공시충 생존수

〈 그림1. 300페이지 샘플북의 150페이지의 준비(예시) 〉

< 그림2. 샘플북 위치 이미지(예시) >

6. 기록물 유해균 등급 선별

기록물 내 서식하는 유해균(세균·진균)의 경우 기록물을 분해 및 변색 등을 유발하기에 생물학적 피해정도에 따라 유해등급을 구분한다.

6.1 기록물 유해균 등급 구분

유해균이 셀룰로즈를 분해 및 변색시키는지에 따라 4등급으로 구분한다.

※ 1등급: 셀룰로즈분해능 + 변색능, 2등급: 셀룰로즈분해능, 3등급: 변색능,

4등급 : 셀룰로즈분해능과 변색능이 없는 균 또는 이런 특성이 알려지지 않은균

6.2 정밀검사 시험방법

- ① 유해균시료 채취 및 용액 혼합
- 멸균된 면봉을 이용하여 기록물의 표면을 오가면서 문질러 채취(면적 : 10cm×10cm)한다.
- 기록물의 인쇄 부분 번짐을 예방하기 위해 공란 부분을 채취한다.
- 채취한 면봉을 멸균한 증류수 20mL에 넣고 24시간 처리한다. 증류수를 흔들어 준 후 증류수액 100μL를 곰팡이 분석을 위해서는 DG18 배지에 분주하고 세균 분석을 위해서는 TSA 배지에 분주한 다음 멸균된 유리도말봉으로 도말하고 2

0℃ 항온기에서 배양한다.

○ 셀룰로즈 분해능을 확인하기 위해 동일한 시료를 CMC 배지에 도말 후 배양한다.

② 배지

- O DG18 배지는 멸균수 1L 기준으로 DG18(Dichloran-Glycerol18%) Broth 16.62g, Agar powder 15g, Glycerol 18% 되게 첨가한 후 고압멸균기(Autoclave)로 121 ℃, 1.5 ~ 2.0 기압에서 15 ~ 20분 멸균한 뒤 45℃로 식힌 다음항생제(클로람페니콜)을 첨가하여 섞은 후 90mm Petri dish에 25ml 씩 분주하여 제작한다.
- TSA 배지는 멸균수 1L 기준으로 Tryptone soya agar 40g, Agar 15g 첨가하여 섞어 준 후 Autoclave로 121℃, 1.5 ~ 2.0 기압에서 15 ~ 20분 멸균한 뒤 45℃로 식힌 다음 항진균제(예, 베노밀)을 첨가하여 섞은 후 90mm Petri dish에 25ml 씩 분 주하여 제작한다.
- CMC 배지는 셀룰로즈 분해 가능한 유해균 평가를 위해 0.5% carboxymethylcellulose sodium salt 탄소원으로, 0.1% yeast nitrogen base without amino acid를 질소원으로, 발색반응(chromogenic reaction)을 위한 염색 기질로서 0.5% Congo red(Sigma-Aldrich)를 각각 첨가한다. 혼합액의 pH를 7으로 조정하기 위하여 pH meter를 사용한다. 고압멸균기(Autoclave)로 121 ℃, 1.5 ~ 2.0 기압에서 15 ~ 20분 멸균한 뒤 90mm Petri dish에 25ml 씩 분주하여 제작한다.

③ 유해균 확인

- DG18 배지, TSA 배지, CMC 배지에 자란 유해균의 형태학적 특성을 관찰하여 기록물 유해균 모니터링 및 기준 검증에서 제시한 분해 및 변색 가능한 유해균의 존재를 판별한다.
- CMC 배지에 자란 유해균 주변에 투명 환이 형성되는지 여부를 관찰하여 분해능을 지닌 유해균의 존재를 판별한다.
- 반응이 불확실하거나 자주 보는 유해균이 아닌 경우, 필요에 따라 종 동정을 수 행하여 판정한다.
- 기록물 분리 동정 유해균에 대해서는 지속적으로 배양 형태 및 아래 유해 정도 에 따른 등급을 분석하여 자료를 구축한다.
 - 1급: 셀룰로즈분해능 + 변색능, 2급: 셀룰로즈분해능, 3급: 변색능,

4급 : 셀룰로즈분해능과 변색능이 없는 균 또는 이런 특성이 알려지지 않은균

참고 문헌

- [1] 국가기록원, 2008, "기록물 장기보존을 위한 서고 환경 개선 방안 연구"연구결과보고서
- [2] 국가기록원, 2012, "기록물 소독효과 검증기술 연구개발"연구결과보고서
- [3] 국가기록원, 2013, "기록물 소독체계 진단 및 개선방안 연구"연구결과 보고서
- [4] 정종수, 최순권, 2008,"박물관과 유해생물 관리"유물보존총서Ⅲ
- [5] 오준석, "박물관과 종합적유해생물관리", 생활문물연구 제15호
- [6] 김보연, 2009, "서울 시내 주요 호텔의 위생실태 조사와 ATP 결과의 상관 분석 연구" 한국식품위생안정성 학회(pp.277-284)
- [7] 박영숙, 2000, "ATP bioluminescence Assay를 이용한 대학 급식시설의 위생상태 평가에 관한 연구"한국조리과학회지(pp.195-201)
- [8] 김양숙, 2010, "급식소 식품접촉표면 위생 모니터링 도구로서의 ATP Luminometer 적합성 확인"한국식품영양과학회지(pp.1719-1723)
- [9] 김겸헌, 2014, "고온 조건에서 사료 내 생균제의 생존성 및 오염미생물의 생장 억제 효과" 한국미생물생명공학회지(pp.345-350)
- [10] 국가기록원, 2018, "종이기록물 상태검사·점검 실무 매뉴얼"(pp.26-28)
- [11] T. Strang and R. Kigawa, Combatting pests of cultural property, CCI Technical Bulletin 29, Ottawa: Canadian Conservation Institute, 2009
- [12] P. Winsor et al., Integrated Pest Management for Collections, Proceedings of 2011: A Pest Odyssey, 10 Years Later, Swindon: English Heritage, 2011
- [13] P. Querner, D. Pinniger, A. Hammer, Proceedings of the International

- Conference on IPM in Museums, Archives and Historic Houses, 2013
- [14] D.B. Pinniger, Integrated Pest Management in Cultural Heritage, London: Archetype Publications, 2015.
- [15] L. Nilsen et al., Integrated Pest Management (IPM) for Cultural Heritage,
 Proceedings from the 4th International Conference, Stockholm: Riksantikvarieämbetet,
 2019
- [16] L. Goldberg, A History of Pest Control Measures in the Anthropology Collections, National Museum of Natural History, Smithsonian Institution, Journal of the American Institute for Conservation, 35, pp.23-43, 1996
- [17] Smithsonian Institute, An IPM Checklist for Planning & Implementing Pest Control on Art & Artifact Collections, AIC News, 22, pp.3-4, 1997
- [18] P.R. Ackery, D.B. Pinniger, J. Chambers, Enhanced pest capture rates using pheromone-baited sticky traps in museum stores, Studies in Conservation, 44, pp.67–71, 1999
- [19] 木川りか,長屋菜津子,園田直子,日高真吾,Tom Strang,博物館・美術館・図書館等におけるIPM その基本理念および導入手順について ,文化財保存修復学会誌,47,pp.76-102,2003
- [20] 木川りか, Tom Strang, 文化財展示収蔵環境におけるIPMプログラム:状況と対策の 段階的モデル,文化財保存修復学会誌, 49, pp.132-144, 2005
- [21] 林晃史, 施設におけるIPM, 総合的有害生物管理, 文化財の虫菌害, 58, pp.3-10, 2009
- [22] 川越和四, 建物における有害生物管理について, 文化財の虫菌害, 61, pp.10-17, 2011
- [23] 佐藤嘉則, 文化財IPMとカビの制御, 文化財の虫菌害, 78, pp.16-24, 2019
- [24] 오준석, 해충류 사진제공

붙임 기록물 유해균 등급 및 인체 유해균 자료

□ 기록물의 유해균(세균·진균) 등급

〈 세균의 기록물 유해가능 등급 〉

번호	학명	기록유해 가능등급
1	Achromobacter aegrifaciens	4
2	Achromobacter pulmonis	4
3	Acidovorax avenae	2
4	Acinetobacter radioresistens	3
5	Acinetobacter ursingii	4
6	Actinotalea fementans	2
7	Agrobacterium arsenijevicii	4
8	Agrococcus terreus	4
9	Aquincola tertiaricarbonis	4
10	Arsenicicoccus bolidensis	4
11	Arthrobacter globiformis	4
12	Arthrobacter oryzae	4
13	Arthrobacter pascens	4
14	Arthrobacter ruber	4
15	Aureimonas phyllosphaerae	4
16	Bacillus albus	3
17	Bacillus altitudinis	2
18	Bacillus aryabhattai	4
19	Bacillus atrophaeus	1
20	Bacillus badius	2
21	Bacillus catenulatus	4
22	Bacillus cereus	2
23	Bacillus cheonanensis	4
24	Bacillus circulans	2
25	Bacillus coagulans	1
26	Bacillus cohnii	4
27	Bacillus coreaensis	4
28	Bacillus flexus	2
29	Bacillus galliciensis	4
30	Bacillus halodurans	2
31	Bacillus halosaccharovorans	4
32	Bacillus humi	4
33	Bacillus idriensis	4
34	Bacillus infantis	4
35	Bacillus kyonggiensis	4
36	Bacillus licheniformis	1
37	Bacillus marisflavi	4
38	Bacillus massiliosenegalensis	4
39	Bacillus megaterium	1
40	Bacillus mycoides	2
41	Bacillus nealsonii	4
42	Bacillus niabensis	4
43	Bacillus oceanisediminis	4
44	Bacillus okhensis	4

45	Bacillus paralicheniformis	4
46	Bacillus paranthracis	4
47	Bacillus patagoniensis	4
48	Bacillus persicus	4
49	Bacillus pumilus	2
50	Bacillus safensis subsp. safensis	4
51	Bacillus siralis	4
52	Bacillus siralis subsp. siralis	4
53	Bacillus subterraneus	4
54	Bacillus subtilis	4
55	Bacillus tequilensis	2
56	Bacillus thioparans	4
57	Bacillus thuringiensis	1
58	Bacillus toyonensis	2
59	Bacillus velezensis	2
60	Bacillus wiedmannii	4
61	Bacillus yapensis	4
62	Bhargavaea cecembensis	2
63	Brachybacterium paraconglomeratum	3
64	Brevibacillus schisleri	4
65	Brevibacterium epidermidis	4
66	Brevibacterium frigoritolerans	4
67	Brevundimonas albigilva	4
68	Brevundimonas vesicularis	2
69	Brucella pseudogrignonensis	4
70	Calidifontibacter indicus	4
71	Cohnella algarum	2
72	Corynebacterium doosanense	4
73	Corynebacterium doosanense Corynebacterium glucuronolyticum	2
74	Corynebacterium glucuroriolyticum Corynebacterium tuberculostearicum	4
75	Cupriavidus necator	4
76	Cytobacillus solani	4
77	Deinococcus radiophilus	4
78	Dermacoccus barathri	4
79	Dermacoccus nishinomiyaensis	4
80	Domibacillus tundrae	4
81	Epilithonimonas hominis	4
82	Exiguobacterium aurantiacum	2
83	Gordonia terrae	4
84	Janibacter cremeus	2
85	Janibacter hoylei	4
86	Kalamiella piersonii	4
87	Kitasatospora xanthocidica	4
88	Kocuria indica	2
89	Kocuria marina	4
90	Kocuria palustris	4
91	Kocuria rhizophila	4
92	Leifsonia shinshuensis	3
93	Leifsonia soli	1
94	Lysinibacillus capsici	4
95	Lysinibacillus chungkukjangi	4
95	Lysinibacillus fusiformis	
96	Lysinibacillus macroides	4 4
98	Lysinibacillus macroides Lysinibacillus massiliensis	4
98	Lysobacter enzymogenes	4
100	Marmoricola aequoreus	2
100	iviai i i i i i i i i i i i i i i i i i	

101	Massilia arenae	3
102	Massilia brevitalea	4
103	Massilia haematophila	4
104	Massilia putida	4
105	Massilia suwonensis	4
106	Massilia timonae	4
107	Mesobacillus persicus	4
108	Metabacillus indicus	4
109	Microbacterium aurum	3
110	Microbacterium azadirachtae	4
111	Microbacterium deminutum	4
112	Microbacterium foliorum	1
113	Microbacterium hominis	4
114	Microbacterium hydrothermale	2
115	Microbacterium lacus	3
116	Microbacterium acus Microbacterium oxydans	3
117	Microbacterium oxydans Microbacterium resistens	4
118	Microbacterium ureisolvens	4
119	Micrococcus aloeverae	4
120	Micrococcus antarcticus	4
121	Micrococcus luteus	3
122	Micrococcus lylae	4
123	Micrococcus yunnanensis	4
124	Moraxella osloensis	4
125	Niallia circulans	2
126	Nissabacter archeti	4
127	Oceanobacillus massiliensis	4
128	Oceanobacillus profundus	2
129	Ochrobactrum pseudogrignonense	4
130	Ornithinibacillus californiensis	4
131	Paenarthrobacter ilicis	4
132	Paenibacillus amylolyticus	4
133	Paenibacillus campinasensis	2
134	Paenibacillus cineris	4
135	Paenibacillus cucumis	4
136	Paenibacillus etheri	4
137	Paenibacillus faecis	4
138	Paenibacillus glycanilyticus	2
139	Paenibacillus illinoisensis	4
140	Paenibacillus lactis	2
141	Paenibacillus lautus	2
142	Paenibacillus nanensis	4
143	Paenibacillus oryzae	4
144	Paenibacillus peoriae	4
145	Paenibacillus provencensis	4
146	Paenibacillus shunpengii	4
147	Paenibacillus taichungensis	2
148	Paenibacillus zeisoli	4
149	Pantoea conspicua	4
150	Pantoea septica	4
151	Paracoccus aeridis	4
152	Paracoccus sanguinis	4
153	Paracoccus yeei	3
154	Promicromonospora thailandica	4
155	Pseudarthrobacter oxydans	4
156	Pseudarthrobacter siccitolerans	4

157	Draudamanas algaliganas	3
157	Pseudomonas alcaligenes	
	Pseudomonas granadensis	4
159	Pseudomonas juntendi Pseudomonas koreensis	4
160		4
161	Pseudomonas oryzihabitans	3
162	Pseudomonas psychrotolerans	4
163	Pseudorhodoferax soli	4
164	Psychrobacillus psychrodurans	2
165	Ralstonia mannitolilytica	3
166	Ralstonia pickettii	2
167	Rhizobium pusense	4
168	Rhodococcus globerulus	4
169	Rhodococcus qingshengii	4
170	Robertmurraya siralis	4
171	Roseomonas aerofrigidensis	4
172	Roseomonas mucosa	4
173	Skermanella aerolata	4
174	Solibacillus isronensis	4
175	Sphingobium naphthae	4
176	Sphingomonas aquatilis	4
177	Sphingomonas cynarae	4
178	Sphingomonas desiccabilis	4
179	Sphingomonas diazotrophica	1
180	Sphingomonas endophytica	4
181	Sphingomonas hankookensis	4
182	Sphingomonas kyungheensis	4
183	Sphingomonas panni	4
184	Sphingomonas sanguinis	4
185	Sphingomonas taxi	2
186	Sphingomonas yunnanensis	4
187	Sporosarcina luteola	2
188	Staphylococcus capitis	4
189	Staphylococcus capitis subsp. capitis	4
190	Staphylococcus caprae	4
191	Staphylococcus edaphicus	2
192	Staphylococcus epidermidis	3
193	Staphylococcus hominis	4
194	Staphylococcus hominis subsp. hominis	4
195	Staphylococcus succinus subsp. succinus	4
196	Staphylococcus warneri	4
197	Stenotrophomonas lactitubi	4
198	Stenotrophomonas maltophilia	3
199	Stenotrophomonas pavanii	4
200	Streptomyces hygroscopicus	2
201	Streptomyces laurentii	4
202	Streptomyces olivaceus	3
203	Streptomyces rochei	2
204	Streptomyces viridochromogenes	2
205	Terrabacter lapilli	4
206	Terribacillus saccharophilus	4
207	Tsukamurella tyrosinosolvens	4
208	Ureibacillus massiliensis	4
209	Williamsia muralis	4
210	Yimella radicis	4

※ 1등급: 셀룰로오스 분해능력 + 변색 능력, 2등급: 셀룰로오스 분해능력, 3등급: 변색능력, 4등급: 해당없음

〈 진균의 기록물 유해가능 등급 〉

번호	학명	기록유해 가능등급
1	Acrodontium crateriforme	2
2	Alternaria alternata	1
3	Alternaria tamaricis	2
4	Arthrinium arundinis	2
5	Aspergillus caesiellus	2
6	Aspergillus calidoustus	1
7	Aspergillus creber	4
8	Aspergillus glaucus	1
9	Aspergillus hiratsukae	2
10	Aspergillus jensenii	2
11	Aspergillus mellinus	1
12	Aspergillus niger	2
13	Aspergillus ochraceus	2
14	Aspergillus penicillioides	2
15	Aspergillus proliferans	2
16	Aspergillus protuberus	4
17	Aspergillus pseudoglaucus	4
18	Aspergillus restrictus	2
19	Aspergillus ruber	1
20	Aspergillus sydowii	1
21	Aspergillus tabacinus	4
22	Aspergillus tennesseensis	3
23	Aspergillus terreus	1
24	Aspergillus tubingensis	2
25	Aspergillus tubiligensis Aspergillus versicolor	2
26	Aspergillus versicolor Aspergillus wentii	4
27	Aspergillus westerdijikiae	4
28	Aureobasidium melanogenum	3
29	Aureobasidium pullulans	2
30	Auricularia polytricha	1
31	Bjerkandera adusta	2
32	Byssochlamys spectabilis	4
33	Candida parapsilosis	1
34	Chaetomium globosum	2
35	Chondrostereum purpureum	4
36	Cladosporium anthropophilum	4
37	Cladosporium asperulatum	4
38	Cladosporium cladosporioides	4
39	Cladosporium crousii	4
40	Cladosporium halotolerans	4
41	Cladosporium oryzae	4
42	Cladosporium perangustum	2
43	Cladosporium pseudocladosporioides	4
44	Cladosporium subuliforme	4
45	Cladosporium tenuissimum	4
46	Cladosporium uredinicola	4
47	Cladosporium westerdijkieae	4
48	Clonostachys byssicola	2
49	Clonostachys rosea	2
50	Coprinellus radians	1
51	Cordyceps pruinosa	2
52	Curvularia akaii	2
53	Curvularia inaequalis	2
	Learvaidina inacquaiis	

54	Curvularia lunata	2
55	Curvularia intermedia	4
56	Curvularia kusanoi	2
57	Emmia lacerata	2
58	Engyodontium album	4
	33	4
59	Eutypella citricola	-
60	Eutypella sp.	4
61	Fusarium merismoides	4
62	Fusarium tricinctum	1
63	Fuscoporia gilva	2
64	Hydnophlebia chrysorhiza	4
65	Irpex lacteus	4
66	Leptosphaerulina chartarum	2
67	Moesziomyces aphidis	4
68	Naganishia albidosimilis	4
69	Naganishia liquefaciens	4
70	Nigrospora oryzae	4
71	Ochroconis mirabilis	2
72	Opuntia humifusa	4
73	Paecilomyces formosus	4
74	Paraconiothyrium brasiliense	2
75	Paraphoma chrysanthemicola	4
76	Parengyodontium album	4
77	Penicillium brocae	4
78	Penicillium chrysogenum	1
79	Penicillium citreonigrum	2
80	Penicillium commune	2
81	Penicillium corylophilum	4
82	Penicillium crustosum	4
83	Penicillium dipodomyicola	4
84	Penicillium expansum	3
85	Penicillium fundyense	1
86	Penicillium glabrum	1
87	Penicillium granulatum	4
88	Penicillium mallochii	2
89	Penicillium manginii	2
90	Penicillium miczynskii	2
91	Penicillium neoechinulatum	2
92	Penicillium oxalicum	4
93	Penicillium rubens	
93	Penicillium rubens Penicillium sclerotiorum	1 1
95	Penicillium scierotiorum Penicillium solitum	2
95	Penicillium steckii	4
97	Peniophora incarnata	4 2
98	Peniophora manshurica	
99	Periconia byssoides	4
100	Periconia pseudobyssoides	1
101	Pestalotiopsis microspora	2
102	Pestalotiopsis thailandica	2
103	Phanerochaete concrescens	4
104	Phlebiopsis crassa	2
105	Pithomyces sacchari	2
106	Plurivorosphaerella nawae	4
107	Porostereum spadiceum	2
108	Pyrenochaeta nobilis	2
109	Rhodotorula dairenensis	1

110	Rhodotorula mucilaginosa	1
111	Schizophyllum commune	2
112	Stereum hirsutum	1
113	Strigula orbicularis	4
114	Talaromyces cecidicola	2
115	Talaromyces tratensis	4
116	Trichoderma harzianum	1

※ 1등급: 셀룰로오스 분해능력 + 변색 능력, 2등급: 셀룰로오스 분해능력, 3등급: 변색능력, 4등급: 해당없음

□ 인체 유해균(세균·진균) 자료

〈 인체 병원성 세균 〉

번호	학명	인체 병원성
1	Achromobacter aegrifaciens	기회성 병원균
2	Acinetobacter radioresistens	균혈증
3	Acinetobacter ursingii	균혈증
4	Bacillus massiliosenegalensis	식욕부진
5	Brevibacterium epidermidis	심내막염
6	Brevundimonas vesicularis	균혈증
7	Corynebacterium tuberculostearicum	점막 염증
8	Dermacoccus barathri	장폐색
9	Dermacoccus nishinomiyaensis	복막염
10	Janibacter hoylei	균혈증
11	Gordonia terrae	균혈증
12	Microbacterium oxydans	균혈증
13	Micrococcus luteus	패혈성 쇼크
14	Moraxella osloensis	결막염
15	Niallia circulans	균혈증
16	Ochrobactrum pseudogrignonense	균혈증
17	Paracoccus sanguinis	균혈증
18	Paracoccus yeei	균혈증
19	Pseudomonas juntendi	기회성 병원균
20	Pseudomonas oryzihabitans	패혈증,복막염
21	Ralstonia pickettii	기회성 병원균
22	Rhizobium pusense	폐혈증
23	Rhodococcus globerulus	알러지
24	Roseomonas mucosa	기회성 병원균
25	Staphylococcus capitis	심내막염
26	Staphylococcus epidermidis	패혈증
27	Staphylococcus hominis	균혈증
28	Staphylococcus hominis subsp. hominis	균혈증
29	Staphylococcus warneri	심내막염
30	Stenotrophomonas maltophilia	기회성 병원균
31	Tsukamurella tyrosinosolvens	수막염

※ 인체 병원성 세균 : 기회성 병원균으로 인체 저항력이 감소시 병을 일으키는 세균

〈 인체 병원성 진균 〉

번호	학명	인체 유해성
1	Aspergillus caesiellus	기회감염균
2	Aspergillus terreus	피부 감염
3	Aspergillus wentii	괴사성 외이염
4	Aspergillus westerdijikiae	대사산물이 발암성 물질
5	Aspergilus ochraceus	기관지 알레르기
6	Byssochlamys spectabilis	기회감염균
7	Chaetomium globosum	손발톱진균증
8	Cladosporium cladosporioides	흑색진균증
9	Coprinellus radians	진균성 각막염
10	Curvularia inaequalis	진균성 복막염
11	Curvularia lunata	심내막염, 각막염, 폐렴
12	Engyodontium album	진균성 각막염
13	Ochroconis mirabilis	기회감염균, 피부병변
14	Paecilomyces formosus	기회감염균
15	Porostereum spadiceum	알레르기

[※] 인체 병원성 진균 : 기회성 병원균으로 인체 저항력이 감소시 병을 일으키는 진균